### Integrated Regional Wetlands Monitoring (IRWM) Pilot Project

### Project Overview

CALFED Science Conference October 5, 2004

> Stuart W. Siegel, Ph.D. Wetlands and Water Resources www.swampthing.org

#### This project is funded by the

### California Bay-Delta Authority Science Program



### Talk Outline

- Project Purpose and Approach
- Regional Forcing Functions
- Conceptual Model Tiering, Sites
- Project Organization and Teams
- Overview of Each Team's Activities
- Where Next

### **Project Purpose**

Primary CALFED Question:

How are tidal marsh restoration efforts throughout the region affecting ecosystem processes at different scales?

Secondary Question:

How best can we carry out cost-effective, informative monitoring of tidal marsh ecosystem restoration efforts to provide long-term answers to the first question?

### **Overall Approach**

Intensive, detailed sampling and data collection programs across multiple disciplines at six sites

- Integrate results across disciplines to generate predictive models toward answering primary CALFED question
- Make results available as quickly as possible watch www.irwm.org

### **Regional Forcing Functions**

### Estuarine Salinity Gradients





- Tidal Range Gradient
- Sediment Supply
- Local Watershed and Delta Outflows
- Climate

### **Conceptual Model Tiering**

**Tier 1: Physical and Landscape Ecology Processes** 

**Tier 2: Structure – Vegetation, Geomorphology** Increasing integration

**Tier 3: Habitats and Species** 

**<u>Tier 4</u>: Food web/nutrient cycling/** primary production



### Team Organizations and Project Participants



### **Physical Processes**





#### **Questions:**

What are the inundation regimes and their variability within and between sites What are surface and pore water salinities and their seasonal variations What are the geomorphic characteristics and their evolution at each site What is the soil chemistry





### Landscape Ecology



#### Measurements:

- Air photos
  - GIS data many sources

### Maps/data extraction:

- Sampling maps
- Geomorphology
- Regional

# Site and landscape spatial metrics:

- Shape
- Edge
- Channel networks
- Landscape context, connectivity, heterogeneity





### **Vegetation/Marsh Plain Production**





#### **Questions:**

- Patterns of species richness, composition, and productivity in relation to channel proximity, inundation, and salinity
- Wetland restoration influences on these patterns
- Compare sampling methodologies
- What is the smallest number of metrics that can predict these patterns



### **Birds**





### **Methods:**

- Point counts and area surveys
- Point counts and transects
  - Banding and re-sighting
  - Nest searching and monitoring

#### **Processes:**

- Abundance and density
- Habitat availability and use
- Survival and dispersal



### Fish

#### **Measurements:**

- Composition
- Abundance
- Diet
- Habitat Use

#### **Processes:**

- Trophic interactions
- Fluxes between marsh
  - and open water





### Invertebrates



#### **Measurements:**

- Plankton tows
- Neuston tows
- Benthic cores
- Fish stomach contents

#### **Processes:**

- Community structure
- Fish prey availability
- Seasonal community changes
- Between-marsh community differences













## Nutrients, Primary Production



**Nutrients:** • NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, Si(OH<sub>4</sub>), PO<sub>4</sub><sup>3-</sup>

### Productivity:

Low marsh vegetation
Phytoplankton and benthic microalgae
SAV and macroalgae









### **IRWM Next Steps**

#### Integrate our detailed data sets together to:

- 1. Re-evaluate conceptual models
- 2. Evaluate model-driven hypotheses
- 3. Calibrate efficient methodologies
- 4. Develop predictive metrics
- 5. Test these metrics
- Apply this integration effort to the two project purposes
- Make methods, data and results available via IRWM web site

# www.irwm.org